This page lists the references relevant for Conquest, gives brief descriptions of each paper, contains links to on-line journals and also has PDF versions of preprints. This list is ordered by year of publication but you can also see it ordered by area.

- ``Density-functional theory study of gramicidin A ion channel geometry and electronic properties’’, Milica Todorović, D. R. Bowler, M. J. Gillan, Tsuyoshi Miyazaki, submitted to J. Royal Soc. Interface (2013). On-line copy.
*First paper studying gramicidin A (further papers in preparation)*

- ``O(N) methods in electronic structure calculations’’, D. R. Bowler and T. Miyazaki, Rep. Prog. Phys. 75, 036503 (2012). On-line copy.
*Exhaustive review of linear scaling methods.*

- ``Linear Scaling Constrained Density Functional Theory in CONQUEST’’, A. M. P. Sena, T. Miyazaki and D. R. Bowler, J. Chem. Theory Comput. 7, 884 (2011). On-line copy.
*Paper detailing the implementation of constrained DFT in Conquest.*

- ``Calculations for millions of atoms with density functional theory: linear scaling shows its potential’’, D. R. Bowler and T. Miyazaki, J. Phys.: Condens. Matter 22, 074207 (2010). On-line copy.
*Paper demonstrating that DFT calculations on systems containing millions of atoms are now possible.*

- ``Non-self-consistent Density-Functional Theory Exchange-Correlation Forces for GGA Functionals’’, Antonio S. Torralba, David R. Bowler, Tsuyoshi Miyazaki and Michael J. Gillan, J. Chem. Theory Comput. 5, 1499 (2009). On-line copy.
*Implementation of GGA in Conquest both self-consistently and non-self-consistently.*

- ``The energetics of hut-cluster self-assembly in Ge/Si(001) from linear-scaling DFT calculations’’, T. Miyazaki, D. R. Bowler, M. J. Gillan and T. Ohno, J. Phys. Soc. Jpn. 77, 123706 (2008). On-line copy.
*Studying self-assembled hut clusters of Ge on Si(001) with system sizes up to 23,000 atoms.* - ``Accuracy of order-N density-functional theory calculations on DNA systems using CONQUEST’’, T. Otsuka, T. Miyazaki, T. Ohno, D. R. Bowler and M. J. Gillan, J. Phys.:Condens. Matter 20, 294201 (2008). On-line copy.
*A study of DNA fragments (up to 10 base-pairs) with Conquest.* - ``Pseudo-atomic orbitals as basis sets for the O(N) DFT code CONQUEST’’, A. S. Torralba, M. Todorovic, V. Brazdova, R. Choudhury, T. Miyazaki, M. J. Gillan and D. R. Bowler, J. Phys.:Condens. Matter 20, 294206 (2008). On-line copy.
*Description of the PAO implementation in Conquest, including an important result about symmetry.* - ``Automatic data distribution and load balancing with space-filling curves: implementation in CONQUEST’’, V. Brazdova and D. R. Bowler, J. Phys.: Condens. Matter 20, 275223 (2008). On-line copy.
*Details of one of the load-balancing schemes used in Conquest.*

- ``Density functional calculations of Ge(105): Local basis sets and O(N) methods’’, T. Miyazaki, D. R. Bowler, R. Choudhury and M. J. Gillan, Phys. Rev. B 76, 115327 (2007). On-line copy.
*Investigation of Ge(105) surface using Conquest.* - ``Order-N first-principles calculations with the CONQUEST code’’, M. J. Gillan, D. R. Bowler, A. S. Torralba and T. Miyazaki, Comp. Phys. Commun. 177, 14 (2007). On-line copy.
*Overview of recent developments and applications of Conquest.*

- ``Recent progress with large-scale ab initio calculations: the CONQUEST code’’, D. R. Bowler, R. Choudhury, M. J. Gillan and T. Miyazaki, phys. stat. sol. b 243, 989 (2006). On-line copy.
*Overview of linear scaling methods, together with a description of recent developments and applications of Conquest.* - ``Large-scale ab-initio calculations’’, T. Miyazaki, R. Choudhury, D.R. Bowler and M.J. Gillan, Proc. of 3rd Int. Conf. on Comput. Model. and Simul. of Materials, ed. P. Vincenzini. (Techna Group, Faenza, Italy, 2005). Local copy of preprint in PDF.
*Presentation of forces and relaxation of Si(001) in Conquest.* - ``Atomic force algorithms in DFT electronic-structure techniques based on local orbitals’’, T.Miyazaki, D.R.Bowler, R. Choudhury and M.J.Gillan, Journal of Chemical Physics 121, 6186 (2004). On-line copy.
*Details of implementation of atomic forces for DFT techniques using localised orbitals.* - ``Recent progress in linear scaling ab initio electronic structure techniques’’, D.R.Bowler, T.Miyazaki and M.J.Gillan, Journal of Physics:Condensed Matter 14 (11), 2781 (2002). On-line journal.
*General overview of linear scaling methods and Conquest in particular.* - ``An embedding scheme based on quantum linear-scaling methods’’, D.R.Bowler and M.J.Gillan, Chemical Physics Letters 355 (3-4), 306 (2002). On-line journal.
*An implementation of embedding using the O(N) method within Conquest.* - ``Parallel Sparse Matrix Multiplication for Linear Scaling Electronic Structure Calculations’’, D.R.Bowler, T.Miyazaki and M.J.Gillan, Computer Physics Communications 137 (2), 255 (2001). On-line journal.
*Detailed description and tests of sparse matrix multiplication for parallel computers as implemented in Conquest.*

- ``Practical methods for ab initio calculations on thousands of atoms’’, D.R.Bowler, I.J.Bush and M.J.Gillan, International Journal of Quantum Chemistry, 77 (5), 831 (2000). On-line journal.
*Early overview of Conquest.* - ``Density matrices in O(N) electronic structure calculations: theory and applications’’, D.R.Bowler and M.J.Gillan, Computer Physics Communications 120 (2-3), 95 (1999). On-line journal.
*How to achieve a robust linear scaling method by combining McWeeny iteration with the auxiliary density matrix method. This is the linear scaling solver currently implemented in Conquest.* - ``Length-scale ill conditioning in linear-scaling DFT’’, D.R.Bowler and M.J.Gillan, Computer Physics Communications 112 (2-3), 103 (1998). On-line journal.
*Description of simplest form of ill-conditioning involved in minimising energy with respect to support functions (particularly in the context of blip functions as a basis).* `First Principles Order N Calculations on Very Large Systems'', M.J.Gillan, D.R.Bowler, C.M.Goringe and E.Hernandez, in`

The Physics of Complex Liquids’’, Proceedings of the Internationl Symposium, 10-12 November 1997, Nagoya, Japan, ed. F.Yonezawa, K.Tsuji, K.Kaji, M.Doi and T.Fujiwara (World Scientific, 1998). Local copy of preprint in PDF*Discussion of three forms of ill-conditioning affecting localised basis techniques.*- ``Linear-scaling DFT-pseudopotential calculations on parallel computers’’, C.M.Goringe, E. Hernandez, M.J.Gillan and I.J.Bush, Computer Physics Communications 102(1-3), 1 (1997). On-line journal.
*Description of parallelisation of the Conquest code in its original form.* - ``Basis functions for linear-scaling first-principles calculations’’, E. Hernandez, M.J.Gillan and C.M.Goringe, Physical Review B 55(20), 13485 (1997). On-line journal.
*Description of the B-spline basis set used in the Conquest code.* - ``Linear-scaling density-functional-theory technique: The density-matrix approach’’, E. Hernandez, M.J.Gillan and C.M.Goringe, Physical Review B 53(11), 7147 (1996). On-line journal.
*Detailed description of the implementation of the practical linear scaling DFT code, Conquest.* - ``Self-consistent first-principles technique with linear scaling’’, E. Hernandez and M.J.Gillan, Physical Review B 51 (15), 10157 (1995). On-line journal.
*Paper describing the strategy used to achieve practical linear scaling performance in Conquest DFT calculations.*