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We describe recent progress in developing practical first principles methods for which the computer
effort is proportional to the number of atoms: linear scaling or O(N) methods. It is shown that the
locality property of the density matrix gives a general framework for constructing such methods.
We then outline some of the main technical problems which much be solved in order to develop a
practical O(N) method based on density functional theory and the pseudopotential method. Recent
progress in solving these problems is presented, and we show that the spatial cut-off distances needed
to achieve good accuracy are small enough to make the calculations feasible. Parallel implementation
of the O(N) methods in the CONQUEST code is outlined, and it is shown that the code exhibits
excellent linear-scaling behaviour on test systems of several thousand atoms. It is pointed out that
the most important remaining problem concerns the optimal strategy for seeking the ground state.
It is argued that there are three different mechanisms of ill-conditioning which cause present search
methods to be inefficient, and some partial solutions are suggested.
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I. INTRODUCTION

First principles simulation based on density functional
theory (DFT) and the pseudopotential method is now in
widespread use in many areas of physics and chemistry.
It is already playing an important role in the study of
complex liquids, and there have been many first princi-
ples simulations of liquids including silicon1, selenium2

and alloys3. However, current calculations are limited to
systems of no more than a few hundred atoms, because
the computer time needed increases at least as the square
of the number of atoms N . There has recently been an
intensive effort4–14 to overcome this limitation by devel-
oping techniques for which the computer time is linearly
proportional to N . We report here recent progress with
these so-called O(N) or linear scaling techniques.

The reason for the N2 dependence is easy to under-
stand. The usual DFT techniques work with the eigen-
functions ψi(r) of the Kohn-Sham Hamiltonian, which
extend over the entire volume of the system. The num-
ber of ψi functions is proportional to N , and the amount
of information in each ψi is proportional to the volume of
the system (which is proportional to N), so that the to-
tal number of variables needed to describe the electrons
increases as N2. For very large systems, the dependence
becomes N3, because conventional methods require the
calculation of the scalar products 〈ψi | ψj〉:

〈ψi | ψj〉 =
∫

drψi(r)ψj(r)∗, (1)

and each of these N2 quantities needs a computational
time proportional to the volume. These bad dependen-
cies on N arise because the ψi orbitals extend over the

whole system. But it has been recognised for a long time
that the quantum state of the electrons in condensed
matter can be described in terms of localised functions,
and this insight provides the key to developing O(N)
methods.

II. GENERAL FRAMEWORK FOR O(N)

Several authors have stressed that the fundamental
reason for the existence of O(N) techniques can be seen
in the properties of the two particle density matrix13,
ρ(r, r′). This can be defined in terms of the Kohn-Sham
eigenfunctions as:

ρ(r, r′) =
∑

i

fiψi(r)ψi(r′)∗, (2)

where fi is the occupation number of orbital i. But in-
stead of considering the ψi as the primary quantities in
terms of which ρ(r, r′) is defined, we regard ρ(r, r′) itself
as the primary quantity27. It is known that DFT can
be formulated perfectly well in terms of ρ(r, r′) without
any explicit mention of wavefunctions. The total energy
Etot can be expressed explicitly in terms of ρ, and the
ground state is obtained by minimising the functional
Etot[ρ(r, r′)], subject to the conditions: (i) ρ is Hermi-
tian; (ii) ρ is idempotent (i.e. its eigenvalues are all 0 or
1); (iii) ρ yields the correct number of electrons, Nel.

Nel = 2
∫

drρ(r, r). (3)

The key property of ρ(r, r′) is that it decays to zero as
| r − r′ |→ ∞. The fundamental reason for this decay
is the loss of quantum phase coherence between distant
points. This means that the amount of information in
ρ(r, r′) is proportional to N , and so much of the apparent
information contained in a wavefunction description must
be redundant.

Given these properties of ρ(r, r′), a general O(N) ap-
proach to the determination of the ground state is to
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minimise Etot with respect to ρ with the additional con-
straint:

ρ(r, r′) = 0, | r− r′ |> Rc, (4)

where Rc is some cut-off radius. This will lead to an
upper bound to the true ground state energy, which will
converge to the true value as Rc is increased. In devel-
oping practical methods, one cannot proceed exactly like
this, as the ρ depends on two vector positions. Instead,
we introduce the additional approximation that ρ is sep-
arable, i.e. that it can be expressed in the form:

ρ(r, r′) =
∑
iα,jβ

φiα(r)Kiα,jβφjβ(r′); (5)

this is equivalent to demanding that ρ have only a finite
number of non-zero eigenvalues. The functions φiα(r) are
known as ‘support functions’, or sometimes as ‘localised
orbitals’. The notation indicates that φiα is the αth sup-
port function on atom i. The matrix Kiα,jβ is the density
matrix in the representation of φiα(r).

In the procedure we have proposed, the localisation of
ρ(r, r′) expressed in equation 4 is replaced by the condi-
tion that the support functions be non-zero only within
limited regions, which in practice are spheres of radius
Rreg centred on the atoms. The φiα can then be seen as
closely related to the atomic-like orbitals that would be
used in a tight binding description. The localisation of
ρ(r, r′) also requires that the matrix Kiα,jβ be subject to
a spatial cutoff, so that Kiα,jβ = 0 when the separation
of the atoms i and j exceeds some value.

The matrix Kiα,jβ cannot be allowed to vary freely,
since ρ(r, r′) is required to be idempotent, or at least
‘weakly idempotent’ (i.e. its eigenvalues must lie in the
interval [0,1]). There are several ways of enforcing this
condition, one of which is equivalent to the O(N) DFT
scheme proposed by Mauri, Galli and Car4. The method
we have proposed13 is based on the ‘purification’ tech-
nique of McWeeny15, recently used in tight binding cal-
culations by Li, Nunes and Vanderbilt7. As explained
elsewhere13, this requires the matrix K to be written as:

K = 3LSL− 2LSLSL (6)

where Liα,jβ is an ‘auxiliary’ density matrix and Siα,jβ

is the overlap matrix:

Siα,jβ =
∫

drφiα(r)φjβ(r). (7)

The localisation of ρ(r, r′) is then imposed as a spatial
cutoff on Liα,jβ :

Liα,jβ = 0, | Riα −Rjβ |> RL, (8)

where Ri is the position of atom i and RL is a cutoff
radius.

We summarise the overall scheme: The ground state
energy and density matrix of the system are determined

by minimising Etot with respect to the φiα(r) functions
and the auxiliary matrix Liα,jβ , subject to the spatial
cutoffs Rreg and RL. This gives an upper bound to the
true Etot, which is expected to go to the true value as
Rreg and RL are increased.

III. PRACTICAL QUESTIONS

The above general scheme can clearly be implemented
in many ways. These are some of the practical questions
that should be asked:

• What is the best way of representing the support
functions φiα(r), i.e. what basis functions should
be used ?

• How should we search for the ground state, i.e.
what strategy should be used to vary the φiα(r)
and the Liα,jβ in minimising Etot ?

• How well does the method work in practice: what
cutoffs Rreg and RL are needed to achieve good
convergence to the true ground state, and for what
sizes of system does the O(N) scheme become more
efficient than conventional methods ?

• How can the forces on the atoms be calculated ?
This is a crucial question if the scheme is to be of
any practical use !

• What is the right way to implement the scheme on
parallel computers ? This is an important question,
because O(N) schemes will show their true power
for large systems, and this will usually require par-
allel machines.

Recently, answers to some of these questions have be-
gun to emerge. In our own work, much has been learnt
through the writing of the parallel O(N) code called
CONQUEST (Concurrent Order N QUantum Electronic
Simulation Technique)16. The next section summarises
some of the findings.

IV. SOME PRACTICAL ANSWERS

A. Representation of the support functions

In considering this question, it is helpful to remember
the lessons that have been learnt from the use of plane
wave basis sets in conventional pseudopotential calcula-
tions. Two of the major advantages of plane waves are
that: (i) Systematic convergence of the total energy with
respect to basis set completeness is achieved by increas-
ing a single parameter – the plane wave cutoff energy,
Ecut; (ii) they are free of bias, i.e. they are completely
flexible, and no judgement has to be made about the kind
of chemical bonding that will occur. If possible, the basis
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set used in O(N) calculations should retain these advan-
tages. In any case, we must certainly aim to achieve the
accuracy normally expected of current plane wave calcu-
lations.

One possibility is to use the spherical analogue of plane
waves, namely the product of spherical Bessel functions
jl(r) and spherical harmonics Y m

l (r̂), in each support re-
gion. The advantages of this representation have been
discussed by Haynes and Payne17, but practical results
have not yet been reported. An alternative is simply
to represent the φiα(r) by their values on a grid and to
calculate matrix elements of the kinetic energy by finite
differences. This method is well established to be prac-
ticable in non-O(N) calculations18 and has been studied
in the O(N) context by us19 and very recently by Hoshi
and Fujiwara20. A third method is the B-spline basis set
used in the CONQUEST code. In this scheme, the basis
functions χs(r) in the expansion:

φiα(r) =
∑

s

biαsχs(r) (9)

are piecewise polynomial functions strictly localised on
the points of a grid which is rigidly attached to each
atom. Details of the B-spline scheme are reported
elsewhere13.

B. Searching for the ground state

The only practical work on this question that we are
aware of is our own work on the CONQUEST code. Ba-
sically, we use the standard conjugate gradients tech-
nique to minimise Etot with respect to the basis coef-
ficients biαs and the matrix elements Liα,jβ . The gra-
dients ∂Etot/∂biαs and ∂Etot/∂Liα,jβ needed to do this
are readily calculated. Since two very different kinds of
variables are involved, the search is organised as a double
loop. In the inner loop, Etot is minimised with respect
to Liα,jβ , with the support functions held fixed. In the
outer loop, the biαs are varied.

We note that the inner loop is identical to the ground
state search in a self-consistent tight binding calculation.
It has been stressed recently21 that in this context in-
variance with respect to linear transformations of the
φiα(r) imposes certain natural constraints, which should
be respected. The implication of this is that in a non-
orthogonal basis set, the correct metric must be applied
to ensure correct gradients (i.e. a fully contravariant gra-
dient ∂Etot/∂Liα,jβ must be added to the contravariant
density matrix; this involves applying the metric S−1 to
the gradient calculated by Nunes and Vanderbilt22). Our
practical experience with the CONQUEST code is that
this procedure is markedly more efficient that a naive
search along the gradients of ∂Etot/∂Liα,jβ .

Although we find that these search methods generally
work, we are not satisfied with their efficiency, and we
return to this question in Section V.
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FIG. 1: The total energy per atom versus region radius (Rreg)
for silicon as calculated by CONQUEST. The value from the
plane wave code CASTEP is shown for comparison.

C. Dependence on the spatial cutoffs

We have already reported preliminary results on the
dependence of the calculated ground state energy on the
cutoffs Rreg and RL, which suggested that accurate re-
sults are obtained with quite modest cutoffs. But these
were mainly based on a model local pseudopotential and
so were not fully realistic. We report here new tests using
standard non-local pseudopotentials23,24. The tests are
done on perfect crystals of silicon.

In testing the dependence of Etot on Rreg, we set RL

equal to infinity, which is equivalent to exact diagonalisa-
tion. For comparison, we have also done calculations with
the standard plane wave code CASTEP25 using precisely
the same pseudopotential and other parameters. Figure
1 shows the calculated total energy as a function of Rreg

for Si and Ge. The results show that Etot converges to
the correct value extremely rapidly once Rreg is greater
than 4 Å. For this radius, each support region contains
17 neighbouring atoms, and the calculations are perfectly
manageable.

Our tests on RL were done with Rreg = 2.715 Å, and
the results for Si are shown in Figure 2. Rather accurate
convergence to the RL = ∞ value is obtained for RL ≥
8 Å, which again is acceptable. No value is shown for
exact diagonalisation because of technical difficulties in
performing comparisons.

The conclusion from these tests is that the practical
values of the spatial cutoffs needed to achieve good ac-
curacy are encouragingly small. In Section III, we asked
for what system size O(N) becomes more efficient than
conventional methods. We believe that it is too soon to
answer this question. The main reason is that the effi-
ciency of the ground state search technique in O(N) is
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FIG. 2: The total energy per atom versus density matrix
cutoff (RL) as calculated by CONQUEST for silicon. The
region radius was 2.715 Å.

still rather poor, as discussed in Section V.

D. Forces on atoms

In the conventional plane wave technique, the force on
each atom is simply the Hellmann-Feynman force, i.e.
the force exerted by the electrons in the ground state as-
sociated with the current ionic positions (plus, of course,
the Coulombic interaction between ionic cores). This re-
lies on the fact that the basis set does not depend on
the ionic positions. In the O(N) technique used in CON-
QUEST, the B-spline basis functions χs(r) move with
the ions, and this gives rise to an additional contribu-
tion to the force, known as the Pulay contribution26. If
the calculation is well converged with respect to basis
set completeness, then the Pulay correction is small, but
it is nonetheless essential to include it, in order to en-
sure exact consistency between the total energy and the
forces. As will be described in more detail elsewhere, the
Pulay contribution is straightforward to calculate. This
means that the relaxation of the system to mechanical
equilibrium and the generation of time-dependent ionic
trajectories will be feasible in O(N) DFT calculations.

E. Parallel implementation

The essence of O(N) is that the system can be sepa-
rated into independent spatial regions. This means that
O(N) is ideally suited to parallel implementation, with
each processor being responsible for a set of atoms and/or
spatial regions. The way this is done in the parallel CON-
QUEST code is described in detail elsewhere16, so we give
here only a brief summary.
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FIG. 3: The total CPU time taken for silicon systems of dif-
fering size, using the CONQUEST code on the Cray T3D.

Each processor is given a three-fold responsibility.
First, it is in charge of a certain group of atoms. This
means that it holds the basis coefficients biαs, the deriva-
tives ∂Etot/∂biαs, and also the rows of all matrix ele-
ments such as Siα,jβ corresponding to these atoms. It
is responsible for performing the transforms from basis
coefficients to grid values φiα(rl) for these atoms, and
also for doing matrix multiplications needed to produce
matrix rows associated with its atoms. Second, each pro-
cessor is in charge of a domain of integration grid points
rl, and has the job of calculating contributions to matrix
elements coming from sums over this domain. It also has
responsibility for the electron density and Kohn-Sham
potential on its domain of points. Third, the processor
is responsible for doing part of the spatial Fourier trans-
forms needed in calculating the Hartree potential. In
practice, this means that it deals with a set of columns
of grid points in the x, y or z directions. The proces-
sors switch between their responsibilities in a synchro-
nised manner, and communication of data between them
is needed when this happens.

We have made extensive tests of the scaling properties
of the CONQUEST code. It is important to stress that
there are two completely different types of scaling. The
first concerns the way the CPU time increases as the size
of the simulated system increases for a fixed number of
processors; we call this ‘intrinsic scaling’. The second
concerns the way the CPU time changes when a given
simulated system is treated on varying numbers of pro-
cessors.

In an implementation of CONQUEST on the Cray
T3D, both types of scaling turn out to be excellent. As
an illustration of the intrinsic scaling, we show in Figure
3 the total CPU time required per iteration for silicon
crystals containing from 64 to 6144 atoms. (Here, total
CPU time means the number of processors multiplied by
the CPU time per processor.) The results show that for
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FIG. 4: A function with elongated surfaces of constant f

a fixed number of processors, the total CPU time is al-
most exactly proportional to the number of atoms, and
this confirms the correctness of the underlying theory.
We also find that for a given simulated system, the total
CPU time increases only very weakly with the number of
processors, which means that the fraction of time taken
in communications is very small.

V. ILL-CONDITIONING PROBLEMS

In spite of the very encouraging findings summarised
above, there remains a question that is still not com-
pletely solved: the strategy for finding the ground state.
The search procedure outlined in Section IVB is gener-
ally successful, but it sometimes requires many iterations,
particularly when the region radius Rreg is large. This
means that practical calculations are rather inefficient.
The problem concerns variations of the φiα, since con-
vergence with respect to the Liα,jβ matrix in the inner
loop is generally rapid. The large number of iterations is
needed in the outer loop where the φiα are varied.

The cause of the problem is ill-conditioning. This is
an extremely generally phenomenon which afflicts min-
imisation problems in many areas of science, and occurs
when the function being minimised has a wide range of
curvatures. Suppose we need to locate the minimum of
some general function f(x1, x2, ..., xN ) which depends on
the set of variables {xi}. Let Cij ≡ ∂2f/∂xi∂xj be the
curvature matrix (sometimes called the Hessian) evalu-
ated at the minimum. If the eigenvalues λn of Cij span
a wide range – the ratio between the largest and small-
est eigenvalues λmax/λmin is large – then the surfaces of
constant f are very elongated (see Figure 4), and con-
ventional techniques such as conjugate gradients become
very inefficient. In fact it is known that the number of
iterations needed by conjugate gradients is proportional
to (λmax/λmin)1/2.

Although ill-conditioning is a very widespread phe-
nomenon, its causes are specific to the problem at hand.
In order to overcome the problem, it is essential to un-
derstand these causes. In fact, it has been recognised for
many years that conventional first principles calculations
can suffer from ill-conditioning, and its causes are already
well understood. It turns out that the ill-conditioning we
encounter in O(N) calculations is closely related to that
found in conventional calculations, so it will be useful to
spend a few moments recalling some well known facts.

In the usual plane wave techniques, the total energy
Etot has to be minimised with respect to the Kohn-Sham

orbitals ψi, which are represented in a plane wave expan-
sion:

ψi =
∑
G

ciG exp(iG · r). (10)

For many systems, particularly metals, it is common to
allow partial occupation of the orbitals, so that orbital
ψi has occupation number fi. We then have Etot =
Etot({ciG}, {fi}). The function Etot has high curvatures
associated with variation of ciG at high wavevector G.
The reason for this is simply that the kinetic energy Ekin

of the electrons is

Ekin = 2
∑

i

fi

∑
G

h̄2G2

2m
| ciG |2, (11)

so that the curvature is proportional to G2. Since this
kind of ill-conditioning comes from the variation of cur-
vature with length scale, we refer to this as ‘length scale
ill-conditioning’. The problem can be cured by conven-
tional preconditioning methods.

Conventional techniques can also suffer from a second
type of ill-conditioning, associated with the invariance of
Etot under unitary transformations of the orbitals. If all
fi are zero or unity, the Etot is exactly invariant under
transformations:

ψi → ψ′
i =

∑
j

Uijψj (12)

where Uij is unitary. This invariance implies that some
of the eigenvalues of the Hessian vanish. But if the fi

deviate from zero or unity, the exact invariance is bro-
ken, and the vanishing eigenvalues of the Hessian acquire
small positive values. It is their smallness that causes
the ill-conditioning. We refer to this mechanism as ‘su-
perposition ill-conditioning’. In conventional techniques,
this is usually cured by a method known as sub-space
rotation.

There is yet another cause of ill-conditioning. When
variable occupation numbers are employed, orbitals
whose energies are well above the Fermi energy will have
very small values of fi. Variations of the correspond-
ing ψi will therefore have little effect on Etot, so that
the curvatures will again be small. Since orbitals having
small fi are almost redundant, we call this mechanism
‘redundancy ill-conditioning’.

All these three types of ill-conditioning can also cause
trouble in O(N) techniques. It is clear, for example, that
the support functions φiα can vary on different length
scales, so that length scale ill-conditioning is inevitable.
This will not cause serious problems, and will be over-
come by conventional preconditioning techniques.

Superposition ill-conditioning, associated with linear
mixing of the support functions, is more interesting. Two
kinds should be distinguished. The first consists of mix-
ing of different φiα on the same atom. It is readily shown
that this leaves Etot exactly invariant, and cannot cause
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trouble. The second consists of mixing of φiα on differ-
ent atoms. Since the φiα are constrained to be zero out-
side their regions, this second kind is, strictly, impossible.
However, for large region radii there are variations which
respect this constraint, while consisting almost exactly
of linear superpositions of φiα on different atoms. The
small curvatures of Etot arising from these variations give
rise to superposition ill-conditioning. Our present belief
is that this problem will not be difficult to overcome. The
reason is that the characteristic variations responsible for
the ill-conditioning can be calculated, and this will make
it possible to precondition them.

Finally, we comment on redundancy ill-conditioning.
We have noted that in conventional techniques this oc-
curs when the number of orbitals exceeds the sum of the
occupation numbers (i.e. half the electron number in
spin-paired calculations). An analogous problem will af-
flict O(N) when the number of φiα is greater than half
the electron number. This will not always happen, be-
cause for many systems the number of φiα can be taken
equal to half the electron number. But for other systems
it will be essential, or at least desirable, to work with
a larger number of φiα. Systems consisting of group IV
elements are a case in point, because it will generally be
natural to take four φiα on each atom, one corresponding
to the valence s-orbital and the other three to p-orbitals.
Once again, we believe that preconditioning will allow us
to overcome this problem, but detailed techniques have
yet to be formulated.

VI. PROSPECTS

The developments presented here give reason for great
optimism about the future potential of O(N) DFT tech-

niques. We have shown how the properties of the den-
sity matrix allow one to give a very general framework
for constructing such techniques. The detailed methods
we have implemented in the CONQUEST code represent
only one possible way of doing this, and other ways will
need to be investigated. We have pointed to a number of
technical problems that must be overcome in construct-
ing practical O(N) techniques, and we have shown that
solutions to most of these problems are now available.
However, some of these may only be interim solutions.
We believe, for example, that the question of how best
to represent the support functions will need consider-
able further investigation before any consensus will be
reached. The same goes for parallel implementation. We
have outlined one way of doing this, and have shown that
this works well for systems of several thousand atoms.
However, we have done this on only one kind of machine
(the Cray T3D), and it may well be that implementa-
tion on other machines (e.g. vector parallel machines)
will raise new questions. Finally, we have pointed out
that there are unsolved questions about the right way to
search for the ground state. The ill-conditioning prob-
lems that we have described will need deeper study.

Perhaps the most important conclusion is that O(N)
DFT calculations definitely work. The spatial cutoff dis-
tances required are small enough to make the calcula-
tions perfectly feasible. Moreover, the O(N) behaviour
of the calculations is actually demonstrated in practice.
Encouraged by these results, our group is now working
towards the application of these techniques to complex
large-scale problems, including nanostructures on semi-
conductor surfaces.
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