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Density functional theory (DFT) has become a standard tool for modelling materials. But conven-
tional methods are very inefficient for large complex systems, because the memory requirements
scale asN2 and the cpu requirements asN3 (N is the number of atoms). We report recent progress
in the development of theCONQUESTcode, which performsO(N) (linear-scaling) DFT calculations
on parallel computers, and has a demonstrated ability to handle systems of over 10,000 atoms. The
code is based on the strategy of minimising the total energy with respect to the Kohn-Sham density
matrix, and the practical techniques for implementing this strategy are outlined. The code can be run
at different levels of precision, ranging from empirical tight-binding, throughab initio tight-binding,
to full ab initio, and techniques for calculating ionic forces in a consistent way at all levels of preci-
sion will be presented. Illustrations are given of practicalCONQUESTcalculations on semiconductor
surface reconstructions. The outlook for future large-scale work on surface nanostructures will be
sketched.

1. INTRODUCTION

The aim of this paper is to summarize very recent progress in techniques for performingab

initio calculations on very large systems, using methods based on density-functional theory (DFT)

and pseudopotentials.1 The key to progress in this area is the principle of “near-sightedness”,2

i.e. the spatial localization of the density matrix, which is the basis for linear-scaling, also called

O(N) techniques,3,4 in which the number of computer operations and the computer storage needed

to perform an electronic total-energy calculation are proportional to the number of atoms in the

system. TheCONQUESTDFT code5–11 is designed to perform this kind of calculation, and itsO(N)

capabilities have been tested on systems of up to 16,000 atoms,10 but up to now it has been limited

to rather simple systems. We report here the developments which now make it possible to doO(N)

DFT calculations on non-trivial materials problems using theCONQUESTcode.

The DFT-pseudopotential method1 has been an established part of the materials modeller’s

toolkit for something like 20 years. It is routinely used by hundreds of groups worldwide for study-



ing problems ranging all the way from surface catalysis to planetary interiors, and from aqueous

solution chemistry to semiconductor nanostructures. It is used as a matter of course for materials

containing elements from the whole periodic table, including the rare-earths and actinides. Although

it is well recognised that DFT methods may sometimes suffer from significant inaccuracies, partic-

ularly for strongly correlated systems, DFT results are widely used as the point of reference for

validating more approximate methods, such asab initio tight-binding or empirical tight-binding.

But in spite of its widespread use, traditional DFT-pseudopotential methods are difficult to apply

to systems of more than a few hundred atoms, because the computer effort increases at least as

fast asN2, and ultimately asN3, as the number of atomsN increases. This means that there are

many important areas of materials science that are currently out of range of traditional methods,

for example large-scale nanostructures, such as quantum dots and nanowires, cracks and voids, and

large biomolecules such as proteins and DNA. This situation has stimulated a major effort over the

past 10 years to developO(N) methods for electronic-structure methods in general,12–17 and the

DFT-pseudopotential method in particular.5,6,11,18–22

The origin of the poor scaling of traditional methods is well understood. These methods gen-

erally work with electronic orbitals that are eigenfunctions of the Hamiltonian, which extend over

the entire system. Both the number of orbitals and the amount of information in each orbital are

proportional toN , so the computer effort must go at least asN2. The need to handle scalar products

between all pairs of orbitals brings the asymptotic scaling toN3. It is also well understood that this

poor scaling is unnecessary. The amount of information needed to specify the electronic structure

does not really scale asN2, it scales asN . To exploit this fact, all that is necessary is to work with

the density matrixρ(r, r′); since this decays to zero as|r− r′| → ∞, the linear scaling of the infor-

mation content is made apparent.2 Equivalently, one can work with “localised orbitals”, i.e. linear

combinations of the eigenfunctions constructed so that they differ significantly from zero only in

spatially localised regions.12,13

These ideas form the basis of a range ofO(N) reformulations of electronic-structure methods,

including tight-binding,3 DFT-pseudopotentials,5,6,11,18,19,22Hartree-Fock,16 post-Hartree-Fock, and

quantum Monte Carlo.17 TheCONQUESTcode is a practical implementation of theO(N) ideas for

the DFT-pseudopotential technique. Later in the paper, we point out its connections with theSIESTA

code,18,19 which also hasO(N) capabilities.

Demonstrations of the practicalO(N) scaling ofCONQUESTon massively parallel computers

were reported several years for simple silicon systems.10 It was shown that the scaling is almost

indistinguishable from linear over a very wide range ofN . However, unreliable stability in the

ground-state search and in electronic self-consistency limited the effectiveness of the code. A further

obstacle has been the need to achieve exact consistency between atomic forces and the total energy,



which is essential for both structural relaxation and for dynamical simulation. Major improvements

in the stability of the code have already been reported so here we emphasise recent progress in the

calculation of forces.

The paper is organised as follows. In Sec. 2, we summarise briefly the main techniques used in

CONQUEST, focusing on the hierarchy of precisions that can be used. Sec. 3 outlines how we have

implemented the calculation of forces throughout the hierarchy. Practical results on the reconstruc-

tion of Si surfaces are presented in Sec. 4 to illustrate the present capabilities of the code, and we

conclude in Sec. 5 with comments on future directions.

2. SUMMARY OF CONQUEST TECHNIQUES

In DFT,1 the total energyEtot is a sum of contributions associated with electronic kinetic energy

Ekin, electron-pseudopotential energyEps (usually, a sum of local and non-local parts), Hartree

energyEHar, exchange-correlation energyExc and ion-ion Coulomb energyEion:

Etot = Ekin + Eps + EHar + Exc + Eion . (1)

Our starting point for the development ofO(N) DFT has been the observation thatEtot can be

expressed in terms of the Kohn-Sham density matrixρ(r, r′), and that the self-consistent ground

state is obtained by minimisingEtot with respect toρ, subject to the condition thatρ is idempotent.5,6

The idempotency condition means thatρ is a projector (the projector onto the subspace of occupied

states), or equivalently that its eigenvalues are either 0 or 1. Ifρ is to be approximated, the condition

of idempotency can be replaced by that of ‘weak’ idempotency,12 meaning that all eigenvalues are

in the interval[0, 1].

In order to proceed, we assume, without significant loss of generality, thatρ(r, r′) is separable,

so that it can be represented in the form:

ρ(r, r′) =
∑
λµ

φλ(r)Kλµφµ(r′) , (2)

where the space spanned by the functionsφλ(r)’s contains the occupied subspace. The ground state

search is then performed by variation of both theφλ(r) and of the matrix elementsKλµ, subject to

weak idempotency.5,6 In practice, we take theφλ(r) to be ‘localised orbitals’: they are functions

that are freely varied, but are non-zero only within spherical regions (so-called ‘support regions’)

centred on the atoms. There is considerable freedom in choosing the number ofφλ on each atom,

but there are natural choices.

The practical implementation of this scheme raises two major questions: (i) what basis set to

use to represent the variable localised orbitals; (ii) how to impose weak idempotency. The basis-set

question is as old as quantum mechanics, and many ways have been proposed to represent localised



orbitals, including numerical representation on a grid,23 spherical waves,20 pseudo-atomic basis

sets,18,19,22 and the B-spline method.7 At present inCONQUEST, two options are implemented:

B-splines, which are mathematically simple and systematically improvable, much like plane-waves;

and pseudo-atomic orbitals, which are economical, and very often give accurate results. We envisage

that other options will be added as required.

There are also several techniques for imposing weak idempotency. At present, we use a com-

bination of the techniques of Li, Nunes and Vanderbilt (LNV)14 and Palser and Manolopoulos,24

both of which are closely related to McWeeny’s ‘purification’ scheme.25 In the LNV technique, the

density matrixK is represented in terms of an ‘auxiliary’ density matrixL as:

K = 3LSL− 2LSLSL , (3)

whereS is the overlap matrix for localised orbitals:Sλµ = 〈φλ|φµ〉. Minimisation of the total energy

with respect toL automatically drivesK towards idempotency. To achieveO(N) operation, the

minimisation is performed with a spatial cut-off on theL-matrix, so thatLλµ = 0 when the distance

between the centres of the support-functionsφλ andφµ exceeds a chosen cut-offRL. Again, other

methods for imposing idempotency could be implemented with little effort.

As an alternative to searching for the ground state by varyingL, CONQUESTalso has the option

of obtaining the ground state directly by diagonalisation. Of course, this is anO(N3) operation, and

it will be appropriate to run in this mode only for small systems. Nevertheless, it is extremely useful

to be able to use diagonalisation, because it allows one to test theO(N) errors incurred with a given

cut-off on theL-matrix.

The ground-state search is organised into three loops. In the innermost loop, the ground state is

determined for fixed support functions and fixed electron density, either by varyingL or by diago-

nalisation. In the middle loop, self-consistency is achieved by systematically reducing the electron-

density residual, i.e. the difference between the input and output density in a given self-consistency

cycle.26 In the outer loop, theφλ are varied. This organisation corresponds to a hierarchy of ap-

proximations. If only the inner loop is used, we get the scheme known as non-self-consistentab

initio tight binding (NSC-AITB), which is a form of the Harris-Foulkes approximation.27–30 If the

inner two loops are used, we get self-consistentab initio tight binding (SC-AITB). If all loops are

used, we have fullab initio. In this last case, we recover the exact DFT ground state as the region

radiusRreg and theL-matrix cut-offRL are increased. For non-metallic systems, the evidence so

far is that accurate approximations to the ground state are obtained with quite modest values of the

cut-offs.6,19

The scheme we have outlined is closely related to the methods used inSIESTA.18,19 The main

differences are: (i) theSIESTA code has not up to now allowed the localised orbitalsφλ to vary, and



instead theφλ’s are represented by fixed PAO’s; (ii) idempotency is imposed using the techniques

developed independently by Mauriet al.12,31 and by Ordejonet al.;13 (iii) the technique of ‘neutral-

atom potentials’18,19 allows calculation of matrix elements to be performed very efficiently.

CONQUESTwas written from the outset as parallel code, and a large part of the development

effort has been concerned with techniques for achieving good parallel scaling. The parallelisation

techniques have been described in detail elsewhere,7,10,11 so we give only a brief summary. There

are three main types of operation that must be carefully distributed across processors:

• the storage and manipulation of localised orbitals, e.g. the calculation ofφλ(r) on the integra-

tion grid starting from blip- or PAO-coefficients, and the calculation of the derivatives ofEtot

with respect to these coefficients, which are needed for the ground-state search;

• the storage and manipulation of elements of the various matrices (H, S, K, L, etc...);

• the calculation of matrix elements by summation over domains of points on the integration

grid.

Efficient parallelisation of these operations, and the elimination of unnecessary communication

between processors, depend heavily on the organisation of both atoms and grid points into small

compact sets, which are assigned to processors.10 When the code runs inO(N) mode, matrix mul-

tiplication takes a large part of the computer effort, and we have developed parallel multiplication

techniques10 that exploit the specific patterns of sparsity on whichO(N) operation depends.

3. IONIC FORCES

In any electronic-structure scheme that is designed for structural relaxation and dynamical sim-

ulation of materials, the algorithms for calculating the forcesFi on the ions must be the exact

derivatives of the ground-state energyEtot with respect to ionic positionsRi, so thatFi = −∇iEtot.

A well-known advantage of the DFT-pseudopotential scheme is that it is straightforward in principle

to achieve this exact relationship between energy and forces. Force algorithms within the various

self-consistent and non-self-consistent schemes used inCONQUESThave been extensively discussed

in the literature. Nevertheless, we have found it necessary to re-examine the calculation of forces, in

order to develop a scheme that works in a unified way for all levels of the hierarchy of approxima-

tions, and which also works equally well for both the diagonalisation andO(N) modes of operation

(see previous Section). We summarise here the force algorithms that have very recently been im-

plemented inCONQUEST– a full report on this will be published elsewhere (Miyazakiet al., to be

published).



At the empirical TB level, the ionic force is a sum of the band-structure partFBS
i and the pair-

potential partFpair
i , the former being given by:29

FBS
i = −2Tr [K∇iH − J∇iS] , (4)

whereK andJ are the density matrix and energy matrix respectively.29 It is readily shown that in

theO(N) scheme of LNV, and in some otherO(N) schemes, the same formula forFBS
i is the exact

derivative of theO(N) total energy. In the LNV scheme,K is given by eqn (3), andJ by:

J = −3LHL + 2LSLHL + 2LHLSL . (5)

In NSC-AITB (Harris-Foulkes), the forces can be written in two equivalent ways. The way that

corresponds most closely to empirical TB is:

Fi = FBS
i + F∆Har

i + F∆xc
i + Fion

i , (6)

whereFBS
i is given by exactly the same formula as in empirical TB. The contributionsF∆Har

i and

F∆xc
i , which arise from the double-counting Hartree and exchange-correlation parts of the NSC-

AITB total energy, have been discussed elsewhere.29 The final termFion
i come from the ion-ion

Coulomb energy. This way of writingFi expresses the well-known relationship between NSC-

AITB and empirical TB that in the latter the pair term represents the sum of the three contributions

∆Har + ∆xc+ ion-ion. The alternative, and exactly equivalent, way of writingFi in NSC-AITB is:

Fi = Fps
i + FPulay

i + FNSC
i + Fion

i . (7)

Here,Fps
i is the “Hellmann-Feynman” force exerted by the valence electrons on the ion cores;FPulay

i

is the Pulay force that arises in any method where the basis set depends on ionic positions;FNSC
i is a

force contribution associated with non-self-consistency, and is expressed in terms of the difference

between output and input electron densities;Fion
i , as before, is the ion-ion Coulomb force. Exactly

the same formulas represent the exact derivative ofEtot in both diagonalisation andO(N) modes.

In both SC-AITB and full AI, the force formula is:

Fi = Fps
i + FPulay

i + Fion
i , (8)

which differs from the second version of the NSC-AITB formula eqn (7) only by the absence of the

non-self-consistent contributionFNSC
i , as expected.

The above hierarchy of force formulas has been implemented inCONQUEST, and extensive

tests have ensured that the total energy and the forces are exactly consistent within rounding-error

precision.



4. ILLUSTRATIVE RESULTS

To illustrate the ability ofCONQUEST to address non-trivial problems, and to show how the

levels of the hierarchy of approximations can work together, we have performed relaxations of the

reconstructed Si(001) surface (see Fig. 1). We have used the PAO and B-spline basis sets available

in the code, and have performed relaxations using non-self-consistent AITB, self-consistent AITB,

and full ab initio. We compare the results against those of two other standard codes: theSIESTA

code19 for PAO comparisons; and the VASP code32 for plane-wave comparisons.

When using the PAO basis set inCONQUESTwe have used a “single zeta” (SZ) set, and relaxed

with both NSC-AITB and SC-AITB methodologies. For the B-splines, we have used a grid spacing

equivalent to a plane wave basis with a 140 eV cutoff, using the fullab initio methodology. For

SIESTA, which uses PAOs, we used a SZ set and a more fully converged DZP (“double zeta plus

polarisation”) set. For VASP, we used a plane-wave cutoff of 150 eV. All calculations used the same

unit cell sizes andk-point sampling. The results are shown in Table 1. Note that the dimer angle is

measured relative to the horizontal (i.e. the (001) surface).

Method Basis Bond length (Å) Bond angle

Siesta(NSC) SZ 2.50 15.9◦

Conquest(NSC) SZ 2.50 14.5◦

Siesta(SC) SZ 2.41 and 2.49 11.7◦ and 31.2◦

Conquest(SC) SZ 2.41 and 2.49 10.2◦ and 33.5◦

Conquest(SC) B-spline 2.37 22.8◦

Siesta(SC) DZP 2.40 19.9◦

VASP PW 2.41 19.7◦

Table 1: Comparison ofCONQUESTpredictions with those ofSIESTA and VASP for the relaxed
structure of the reconstructed Si (001) surface (see Fig. 1). Comparisons of dimer bond length and
buckling angle are given with SZ and B-spline basis sets inCONQUEST, and SZ and DZP basis sets
in SIESTA; VASP used the conventional plane-wave basis set.

We see that the SZ basis sets, although somewhat crude, give useful semi-quantitative predic-

tions. The inclusion of self consistency changes the buckling angle of the surface dimers, and

shortens the dimer bond length; it also induces an unphysical distortion, in which the symmetry of

the surface is lost, as shown by the two sets of results for bothCONQUESTandSIESTA. TheSIESTA

results for the DZP basis show that this comes very close to plane-wave results. TheCONQUEST

B-spline results (fullab initio) show excellent agreement with the VASP results. We note that the

exact consistency of forces and total energy inCONQUESTmakes structural relaxation for this kind



of problem very straightforward.

We have also performed NSC-AITBO(N) relaxations of the same system, and find a bond

length of 2.42Å and a dimer angle of 15◦. These results are remarkably independent of cut-off

on theL matrix (they remain essentially the same forRL > 7 Å). We show an illustrative surface

structure in Figure 1.

Figure 1: Relaxed structure of the Si (001) surface fromO(N) CONQUESTcalculations.

5. DISCUSSION AND CONCLUSIONS

The development of practical and reliableO(N) DFT techniques is a challenge that has been

taken up by several research groups. We have argued here that there is a strong advantage in setting

up these techniques so that they can be applied at different levels of precision, going from minimal-

basis tight binding all the way through to fullab initio. We have also shown how the calculation of

ionic forces can be performed consistently at all levels of this hierarchy, both inO(N) and in di-

agonalisation modes of operation. Our illustrativeCONQUESTcalculations on the reconstruction of

the Si (001) surface demonstrate excellent numerical agreement with other DFT methods, including

the plane-wave technique. We are now applying theCONQUESTcode to more ambitious large-scale

problems, including the reconstruction of Ge overlayers on Si (001) and the adsorption of metal

clusters on oxide surfaces.

ACKNOWLEDGMENT

The CONQUESTproject is partially supported by ACT-JST. DRB is supported by a Royal Society

University Research Fellowship, and RC by an EPSRC studentship.

REFERENCES

1) M. C. PAYNE , M. P. TETER, D. C. ALLAN , T. A. ARIAS, J. D. JOANNOPOULOS, Rev. Mod.
Phys.64 (1992) 1045.



2) W. KOHN, Phys. Rev. Lett.76 (1996) 3168.

3) D. R. BOWLER, M. AOKI , C. M. GORINGE, A. P. HORSFIELD, D. G. PETTIFOR, Modell.
Simul. Mater. Sci. Eng.5 (1997) 199.

4) S. GOEDECKER, Rev. Mod. Phys.71 (1999) 1085.

5) E. HERNANDEZ, M. J. GILLAN , Phys. Rev. B51 (1995) 10157.
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